网上有关“微分几何学的初始阶段”话题很是火热,小编也是针对微分几何学的初始阶段寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
1827年德国数学家C.F.高斯的论文《弯曲曲面的一般研究》在微分几何学的历史上有重大的意义。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带有根本性的内容,他在论文中建立了曲面的内在几何学,其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲线的长度、两条曲线的夹角、曲面上一区域的面积、测地线、测地曲率和总曲率等等,称之为曲面的内在性质。
高斯之前的几何学家,在研究曲面时总是把曲面与外围空间E3相联系,找出曲面上一点的主方向,再计算两曲率线的法曲率的乘积,这是欧拉的研究。高斯证明了由曲面的第一基本形式就确定了曲面的总曲率,这就是高斯方程,所以总曲率通常也称为高斯曲率,这是高斯的著名发现,被称为“极妙定理”。他说:“如果一个弯曲的曲面可展开到任何另外的曲面上去,则每点的曲率是保持不变的。”这里,“可展”表示了映射是1-1(一一)且保持距离的。高斯建立的内在几何学有着深远的影响,是在微分几何上的一关键而重大的突破,但当时并未被人们所认识。 更重要的发展属于德国数学家(G.F.)B.黎曼。1854年他在格丁根大学发表了题为《论作为几何学基础的假设》的就职演讲,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧氏空间中的一个几何实体。他发展了空间的概念,首先提出了n维流形(当时称为多重广延量)的概念,其中的点用n个实数(x1,x2,…,xn)作为坐标来描述,他定义了流形上无限邻近两点(xi)与(xi+dxi)(i=1,2,…,n)的距离 , (2)并以此作为几何学的出发点。后来称(2)为黎曼度量,这里(gij)是正定对称阵。黎曼认识到度量(2)是加到流形上去的一个结构,因此,同一流形可以有众多的黎曼度量。黎曼以前的几何学家只知道外围空间E3的度量赋予曲面S以诱导度量 ,(3)即第一基本形式,而并未认识到曲面S还可以独立于E3而定义,可以独立地赋予度量结构。黎曼意识到这件事是非凡的重要,他把诱导度量与独立的黎曼度量两者分开来,从而开创了以(2)为出发点的黎曼几何。这种几何以种种非欧几何作为其特例。例如,这时可以把(α 是常数) (4)作为两个无限邻近点的距离,当α>0时,就是球面几何或椭圆几何(又称为正常曲率空间的几何),α=0时就是欧氏几何,α<0时就是罗巴切夫斯基几何或双曲几何,又称负常曲率空间的几何。
黎曼几何中的一个基本问题是微分形式的等价性问题。在两个不同坐标系x1,x2,…,xn与x1',x2',…,xn' 中,给定两个二次微分形式 与 ,求存在坐标变(i=1,2,…,n)将一个微分形式变到另一个的条件,这个问题1869年由E.B.克里斯托费尔与R.(O.S.)李普希茨解决。克里斯托费尔的解包含了以他的名字定名的记号,即第一类克里斯托费尔记号jk,l和第二类克里斯托费尔记号: , (5)及协变微分(见黎曼几何学)的概念。在此基础上,1887~1896年间G.里奇发展了张量分析方法,这在广义相对论中起了基本的作用。里奇和他的学生T.列维-齐维塔在研究报告《绝对微分法及其应用》(1901)中对里奇计算法作了详细的综述。
微分几何起源于古典微分几何,就是研究三维欧氏空间中的曲线和曲面的数学分支。这个分支从微积分建立伊始就开始了,高斯把它系统化,并且发现了内蕴几何。
粗略地说,内蕴几何的含义就是不需要借助于三维欧氏空间就可以刻画曲面的性质。这使得曲面可以脱离三维空间而独立存在。黎曼把这个理论发展为黎曼几何,可以研究任意维数的弯曲空间。经过黎曼、Ricci、Levi-Civita 等人的推动,流形、张量、联络、曲率等等概念都建立起来了。这就是微分流形理论的雏形。这时候的微分流形是用局部坐标来刻画的,就如同老师教地理的时候给你一本世界地图册却不拿地球仪来一样,地理老师甚至都不能明确地告诉你,我们生活在一个大致是球面的世界上,地理课就这么开下去了。
广义相对论就是在这么一个背景下建立的。除了广义相对论,分析力学也可以用类似的方式来描述(尽管它产生得更早)。此外,李群理论也在这样一个背景下,用大致相似的方式建立起来了。德国的女数学家 Noether 建立了(拉格朗日系统和哈密顿系统的)守恒律和连续对称性之间的关系,这就是著名的 Noether 定理。这些都促使物理学家关注微分几何理论。
现代微分流形理论的体系主要是在 Weyl、Whitney、Cartan 等人的工作基础上建立的。尽管基本的研究对象和黎曼以来没有太大的变化,但是在概念上都大大地深化和细化了。打个比喻,这就像地理老师搬来了地球仪来上课一样,并进而从地球讲到了整个宇宙,特别是地球在宇宙中的地位,毫无疑问地扩大了学生的视野、深化了学生的认识。
黎曼几何只是微分流形理论中的一个分支而已。当然也是最基本的一个分支。和 Lagrange 力学相关的几何与切丛密切相关,和 Hamilton 力学相关的几何则是辛几何这个分支。Lie 群理论也是一个相当重要和基本的分支。可以说,这些分支都是物理学的各种基本理论的基础。
纤维丛理论也是微分流形理论的一个分支。它不仅在数学中重要,对于现代物理学中的量子力学、经典和量子场论、粒子物理学等等,都起着基础的支撑作用。
关于“微分几何学的初始阶段”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是珠升号的签约作者“夜蕾”
本文概览:网上有关“微分几何学的初始阶段”话题很是火热,小编也是针对微分几何学的初始阶段寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 1827...
文章不错《微分几何学的初始阶段》内容很有帮助