网上有关“段学复的主要论著”话题很是火热,小编也是针对段学复的主要论著寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
1 段学复,华罗庚.Some Anzahl theorems for groups of primepower or-ders.J.Chinese Math.Soc.,1940,2:313—319.
2 段学复,华罗庚.Deter mination of the groups of odd-prime-power pnwhich contain a cyclic subgroup of indexp2.Sci.Reports Nat.Tsing-Hua University Ser.A,1940,4:145-151.
3 段学复,布劳尔.Some remarks on sim ple groups of finite order(Ab-stract).Bull.Amer.Math.Soc.1942,48:356.
4 段学复.On simple groups of order Iess than 1942,unpub lished.(参见R.Brauer,Blocks of characters and structure of finite groups.Bull.Amer.Math.Soc.New Series,1979,1:21—38.)
5 Hsiio Fu Tuan.On groups whose orders contain a prime number to thefirst power.Ann.Math.1944,45(2):110-140.(Ph.D.Dissertation,Princeton Univ.,1943)
6 Hsio-Fu Tuan.A note on the replicas of nilpotent matrices.Bull.Amer.Math.Soc.,1945,51:305-313.
7 段学复,谢瓦莱.On algebraic Lie algebras.Proc.Nat.Acad.Sci.U.S.A1945,3:195-196.
8 段学复,布劳尔.On simple groups of finiteorderI.Bull.Amer.Math.Soc.,1945,51:756-766.
9 段学复.An Anzahl theorem of Kulakoff’s type for p-groups.S Ci.Rep.Nat.Tsing Hua Univ.Ser.A,1945,5:182-189.
10 段学复.A theorem about p-groups With abeliansub groups of inde Xp.AcadSinica Sci.Record,1950,3:27-32.
11 段学复,谢瓦莱.Algebraic Liealgebras and their invariants.J.ChineseMath.Soc.(New Ser.)or Acta Math.Sinica,1951,1:215-242.
12 段学复.近代中国数学家在代数方面的贡献.数学进展,1955,1:609-614.
13 段学复,王萼芳.有限群模表示论讲义.北京大学数学力学系资料,1964-1966.
14 段学复.Works on finite group the ory by some Chinese mathe maticians.Proc.of Sympos.in Pure Math.Vol.37,Amer.Math.Soc.,1980:187—194.
15 段学复.关于有限单群分类问题解决情况及其影响.中国数学会全国第一届代数学学术交流会议,1982.
16 段学复,万哲先,曹锡华等.代数学.上海自然杂志社科学年鉴,1983,2:711.
17 段学复编.Group Theory,Beijing 1984.Lecture Notesin MathematicsVol.1185,Berlin-Heidelberg:Springer-Verlag,1986.
18 段学复.Somere Cent works on finite group theory by my col1eagues andgraduate students,Lecture Notes in Mathematics Vol.1185,Berlin Heide lberg:Springer-Verlag,1986.
19 段学复.Some problems in the block theory of modularrep resentations,Proc.of a Conference on classical groups and related t opics(beijing,1987).Comtemp.Math.Vol.82,Amer.Math.Soc.181—190.
20 段学复.“代数学”,“群”,“布劳尔,R.(D)”,“谢瓦莱,C”(中国大百科全书·数学).中国大百科全书出版社,1988:111-116;546-550;42;776-777.
21 段学复.对称(北京数学会数学小丛书之二).北京:科学出版社,1956.
22 段学复译.李群论(苏联数学四十年,代数学分册).北京:科学出版社,1964:76-93.
23 段学复.悼念郑之蕃先生.数学进展,1964,7:119.
24 段学复.天才勤奋成大家-悼华罗庚同志.群言,1985,17:23—23;37.
25 段学复.Memories of Loo-Keng Hua.Comtemp.Math.Vol,82,Amer.Math.Soc.,1-5.
许以超的学术成就
《法兰西数学精品译丛 》
目录回到顶部↑
历史回顾
0 可和族(点集拓扑学复习)
Ⅰ Hilbert空间
1.1 半双线性型
1.2 Hermite型
1.3 准Hilbert空间
1.4 内积空间
1.5 范数,距离,内积空间上的拓扑
1.6 Hilbert空间
1.7 标准正交族
1.8 Hilbert维数
1.9 Hilbert空间的Hilbert和
1.10 一个内积空间的完备化
Ⅱ Hilbert空间上的连续线性算子
2.1 连续线性算子的一般性质
2.2 关于连续线性算子的若干定理
2.3 连续线性泛函
2.4 连续双半线性型
2.5 共轭
.2.6 双连续线性算子
2.7 特征值
2.8 谱,豫解式
2.9 线性算子的强收敛和弱收敛
Ⅲ 特殊的线性算子类
3.1 正常算子
3.2 Hermite算子
3.3 Hermite算子之间的序
3.4 投影
3.5 恒等映射的分解
3.6 等距算子
3.7 部分等距算子
Ⅳ 紧算子
4.1 紧算子
4.2 Hilbert?schmidt算子
4.3 正常紧算子的谱分解
4.4 对积分方程的应用
Ⅴ 连续Hermite算子的谱分解
5.1 连续函数演算
5.2 应用:连续线性算子的极分解
5.3 函数演算的延拓
5.4 Hermite算子的谱分解
5.5 正常算子的谱分解
5.6 酉算子的谱分解
5.7 正常算子和乘法算子
Ⅵ 单参数酉算子群
6.1 一个有界函数关于一个恒等映射分解的积分
6.2 单参数酉算子群
6.3 应用:Bochner定理
参考文献
主要记号
译后记
名词索引
↓展开全部内容
序言回到顶部↑希尔伯特空间上的分析及算子的谱理论是现代数学、物理及工程科学的众多分支中不可或缺的工具,特别是在下述领域中:.
——偏微分方程理论;
——量子力学;
——信号处理;
——遍历理论。
约翰·冯·诺伊曼是1930年左右认识到希尔伯特空间上的分析在量子力学中的重要性的先驱之一。在这之后,希尔伯特空间上的算子理论始终在不停地发展,而源于群表示论、量子场论、量子统计力学以及AlainConnes自20世纪80年代起开创和发展的非交换几何的需要都为这种发展提供了强大的动力。
雅克·迪斯米埃在算子代数领域有着巨大的影响。除了他自己在这一领域所作出的重要贡献,他还为传播穆雷(F.J.Murray)和冯·诺伊曼的工作做了许多努力。他的专著Les algebres d'operateurs dans L'espace hilbertien(英译本von Neumann Algebras)和Les C*-algebres et leurs representations(英译本C* algebras)在它们问世后的几十年里一直是世界各国该领域的工作者入门与参考的必备书籍。他创立并长期领导的法国算子代数学派,至今在世界上仍是具有极大影响力的。他还直接或间接指导了为数众多的研究生。不仅如此,他在其他一些数学领域,比如李群的表示论以及包络代数理论中,都有很突出的工作。..
雅克·迪斯米埃不仅是一位伟大的数学家,他还是一位众所周知的优秀教师。他的Cours de mathematiques du premier cycle(《大学数学教程》,两卷,其中第一卷有高等教育出版社的中译本)曾为无数法国学生所使用。在硕士水平上,雅克·迪斯米埃在巴黎第六大学(又称皮埃尔和玛丽·居里大学)曾经教授过多年的《希尔伯特空间上的算子谱理论》。他发给学生的手写油印讲义就是本书的原稿。在法国有好几代学生曾得益于此。
仅仅要求点集拓扑和积分理论的非常简单的基础知识,这一教程给出了算子谱理论的非常清晰、优雅而且完备的叙述。在用初等方法讲述了希尔伯特空间的基本工具以后,所有的基本结果都被循序渐进地涉及了,直到自共轭算子的谱分解和单参数酉算子群的研究:这些是所有希望深入学习数学或者物理的学生都必须掌握的一些知识。
非常遗憾,本书稿在法国并没有出版。我们有理由相信,由雅克·迪斯米埃的再传弟子之一的姚一隽所翻译的这一中文版将使为数众多的中国读者都能够从中受益。本书必将成为这一领域的师生与科研工作者的案头用书。
克莱尔·阿南塔哈曼-德拉霍什
法国奥尔良大学教授...
数学家的故事(至少五位),谢谢了
许以超主要在复齐性有界域方面开展研究工作,获得了十分丰富的研究成果,做出了具有国际先进水平的开创性工作,开辟了复齐性有界域研究方面的新局面。单复变函数论中著名的黎曼(Riemann)定理断言:边界至少两点的单连通域全纯等价于单位圆盘。该结果不能推广到多个复变数的情形。E.嘉当(Cartan)引进了埃尔米特(Hermite)对称空间,从齐性空间的角度给出了完全分类,证明了它是四大类典型域(可以在复欧氏空间中明确定义)和两个例外的不可分解埃尔米特对称空间(一为复16维,另一为复27维)的拓扑积。后来,哈里希—钱德拉(Harish-Chandra)证明了埃尔米特对称空间可以全纯地嵌入到欧氏空间中,且为有界域(称为对称有界域),但仍不知两个例外情形是个什么样的域。由于埃尔米特对称空间是齐性复流形,嘉当猜想:任何齐性有界域都全纯等价于对称有界域。华罗庚则给出了一个弱的猜想:任何齐性有界域的全纯截曲率恒非正。1959年到1963年,前苏联柏雅茨基—沙皮罗(Piatetski-Shapiro)用两个反例否定了嘉当猜想,引进了西格尔(Siegel)域,证明了西格尔域(是无界域)全纯等价于有界域,并且与温贝格(Vinberg)和季特金(Gindikin)合作证明了任意齐性有界域必全纯等价于齐性西格尔域,因此,齐性有界域在全纯等价下的分类就化为齐性西格尔域在仿射等价下的分类。1961年,陆启铿和许以超用一些反例否定了华罗庚猜想。
从分类的角度,下一步的问题是齐性西格尔域的分类。许以超将这一问题化为一个初等的矩阵论问题。他首先定义了一批实及复矩阵构成的集合(称为正规矩阵集),利用这批矩阵引进了正规西格尔域(它是复欧氏空间中的齐性西格尔域):其中Cj(z),Qj(u)都是方阵,且有明确的定义。然后,他证明了任意齐性西格尔域线性等价于某个正规西格尔域,并且正规西格尔域间全纯等价当且仅当定义它们的正规矩阵组在一种特殊的关系下互相等价。这样,齐性有界域的分类问题便化为正规矩阵组的等价分类。沿着这条线路,在假设正规矩阵组中所有矩阵都是方阵的情形,他给出了完全分类。这些结果出乎意料地包含了嘉当关于埃尔米特对称空间的结果,即找到了那两个例外情形的域的具体表达式。许以超的上述结果是在1965年前后做出的,但由于“四清”运动和“文化大革命”运动,直到1976年才发表。
所谓齐性空间,就是一个连通李群G模一个特殊的闭子群H,其中G是G/H上的自同构群。所以齐性有界域的全纯自同构群是很重要的。因此,很多数学家希望弄清楚全纯自同构群,为此做了很多工作。这个问题在1976年由德国数学家多尔夫马斯特(Dorfmaster)和许以超同时独立地解决。前者由于借助了一般齐性西格尔域的某种刻画,所以对全纯自同构群的具体性质,难以进一步研究。
利用正规西格尔域的具体表达形式,许以超算出了它们的伯格曼(Bergman)核函数,伯格曼度量,柯西—赛格(CauchySzeg)核和形式泊松(Poisson)核,证明了厄基—施坦(VegiStein)猜想:形式泊松核为泊松核的充分且必要条件是齐性西格尔域对称。此外,他还讨论了齐性西格尔域的二阶不变微分算子,证明了齐性西格尔域的伯格曼映射为全纯同构,弄清了用温贝格关于齐性西格尔域的实现为什么没有办法讨论齐性有界域上的函数论。
许以超关于齐性西格尔域的实现,大大推进了齐性有界域的函数论性质和几何性质的研究,将这些问题的研究变为可计算的。他证明了非对称齐性西格尔域的形式泊松核不是泊松核,接着提出了如何在非对称齐性西格尔域上建立调和函数论,即研究拉普拉斯—贝尔特拉米(Laplace-Beltrami)方程的解空间的性质这样一个重要问题。另一方面,他给出了全纯自同构群的李代数的一组标准基及其乘法表,从而提供了研究这类李代数的良好条件。许以超的工作,国际上公认是西格尔域方面自1975年以来所取得的最重要的工作。法国著名数学家J.L.科斯居尔(Koszul)有这样的评价:“在我看来,许以超关于凸锥和西格尔域的工作是自1975年以来对该理论有最重要和最具奠基性贡献的工作,这应当能够促成在许多方向的新的发展。虽然在正规锥概念引进后,更好地了解它的代数结构是必要的,然而正如许以超的杰出工作所表明的,一旦这一方法被掌握,它就是一个非常有效的工具。”许以超的这项工作在1987年获得中国科学院自然科学二等奖。
温贝格和季特金猜想,齐性凯勒(Khler)流形是全纯纤维丛,底空间是齐性有界域,丛空间是紧齐性凯勒流形。多尔夫马斯特证明了这个猜想。在日本学者村上信吾工作的基础上,许以超给出了在约化李群可递作用下的凯勒流形的完全分类。
他还在二维复欧几里得空间中加上图伦(Thullen)条件的有界域上考虑了分类。图伦和H.嘉当(Cartan)对赖因哈特(Reinhardt)域和圆形域及部分半圆型域给出了完全分类。许以超和他的学生则对半圆型域及正(m,p)圆型域给出了完全分类,这提供了一批有意义的标准域。而构造标准域的方法,对研究其他图伦条件下的标准域以及推广到多个复变数情形,都是很有用的。
从1958年到1976年,许以超分别承担了多种不同的数学应用任务。1958年,数学所解散代数、数论和拓扑组,成立运筹组。他参加了推广线性规划的小组,在交通运输和全国粮食调配方面,参与编制方案。在此基础上,许以超与王元等人编写了《线性规划的理论及其应用》一书,该书于1959年在高等教育出版社出版,是国内第一本线性规划方面的书。1969年,他完成了特征2的域上本原多项式的计算任务;1976年,又完成了小范围人口预测的计算任务。这些工作都得到了使用单位的好评。
从1986年起,许以超积极地参与了中学生数学竞赛活动。他参加了第一次中国数学奥林匹克集训队的培训,选拔出的6名队员,在国际数学竞赛中获得了很好的成绩。他从1992年开始参加中国数学奥林匹克命题组,参与选拔集训队员和出国代表队员,为中国队多年在数学国际奥林匹克竞赛中取得总分第一及获得大量金牌,作出了自己应有的贡献,为祖国争得了荣誉。1998 年他被中国数学会奥林匹克委员会聘为数学奥林匹克国家级教练。
虽然科研单位没有教学任务,但是许以超很关心大学数学教育;先后为中国科学技术大学1961级和1963级,南开大学1986级,清华大学1989级,河南大学2000级本科生讲授了高等代数。其中为中国科学技术大学数学系61和63两个年级的授课时间长达4年,讲授内容包括平面和空间解析几何、高等代数、线性代数、抽象代数等。其后,他将讲义整理成《代数学引论》一书,在华罗庚教授的推荐下,于1966年在上海科学技术出版社出版。这本书,在国内教材中第一次充分利用矩阵工具,将线性空间的问题化为代数问题。书中收录了大量难题,成为“文化大革命”后,考研究生的必备参考书,并且影响了“文化大革命”后出版的很多高等代数教科书。1992年,为适应新的需要,他将《代数学引论》中的部分章节重新整理,改写成《线性代数和矩阵论》一书,在高等教育出版社出版,该书在1996 年获得国家优秀教材一等奖。可以说,《代数学引论》一书作为线性代数基础教科书及教学参考书,足足影响了几代人。
许以超是国内少数真正熟悉李群的数学家。在1983年和严志达教授合作在高等教育出版社出版了《李群及其李代数》一书,该书于1990年获得国家优秀教材二等奖。2000年,他在科学出版社出版了《李群及Hermite对称空间》一书。他先后在北京大学、中国科学技术大学、中国科学院研究生院、杭州大学、郑州大学、浙江大学、南开大学、河南大学为研究生讲授了李群课程,对李群学科在国内的普及作出了不可磨灭的贡献。许以超讲课思路清晰,说理透彻,富有启发性,教学效果十分突出,深受各地学生和教师们的欢迎。在讲课中,他特别注意说清楚证明的思路是什么,为什么要这样去想。他善于剖析课程内容,注重基础训练,注重所讲课程的实质,注重数学技巧的运用,因而能够为学生以后做研究工作打下扎实基础。
数学家高斯小时候的故事
从一加到一百
高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。
高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。
七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。
数学家高斯的故事
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
数学家华罗庚小时候的轶事
华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。
华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。
金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?
数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心
陈景润:小时候,教授送我一颗明珠
20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。
不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。
小小陈景润,自己对自己因材施教着。
一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。
沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。
大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。
师手遗“珠“,照亮少年奋斗的前程
“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“
像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。
“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。
“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。
该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。
“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”
沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:
“你行吗?你能摘下这颗数学皇冠上的明珠吗?”
一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。
1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!
1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。
名人成长路
陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。
笛卡儿
我们现在所用的直角坐标系,通常叫做笛卡儿直角坐标系。是从笛卡儿 (Descartes R.,1596.3.31~1650.2.11)引进了直角坐标系以后,人们才得以用代数的方法研究几何问题,才建立并完善了解析几何学,才建立了微积分。
法国数学家拉格朗日(Lagrange J.L.,1736.1.25~1813.4.10)曾经说过:"只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是,当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力。从那以后,就以快速的步伐走向完善。"
我国数学家华罗庚(1910.11.12~1985.6.12)说过:"数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难入微。形数结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!"
这些伟人的话,实际上都是对笛卡儿的贡献的评价。
笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数学理论,它是一种思想方法和技艺,它使整个数学发生了崭新的变化,它使笛卡儿成为了当之无愧的现代数学的创始人之一。
笛卡儿是十七世纪法国杰出的哲学家,是近代生物学的奠基人,是当时第一流的物理学家,并不是专业的数学家。
笛卡儿的父亲是一位律师。当他八岁的时候,他父亲把他送入了一所教会学校,他十六岁离开该校,后进入普瓦界大学学习,二十岁毕业后去巴黎当律师。他于1617年进入军队。在军队服役的九年中,他一直利用业余时间研究数学。后来他回到巴黎,为望远镜的威力所激动,闭门钻研光学仪器的理论与构造,同时研究哲学问题。他于1682年移居荷兰,得到较为安静自由的学术环境,在那里住了二十年,完成了他的许多重要著作,如《思想的指导法则》、《世界体系》、《更好地指导推理和寻求科学真理的方法论》(包括三个著名的附录:《几何》、《折光》和《陨星》),还有《哲学原理》和《音乐概要》等。其中《几何》这一附录,是笛卡儿写过的唯一本数学书,其中清楚地反映了他关于坐标几何和代数的思想。笛卡儿于1649年被邀请去瑞典作女皇的教师。斯德哥尔摩的严冬对笛卡儿虚弱的身体产生了极坏的影响,笛卡儿于1650年2月患了肺炎,得病十天便与世长辞了。他逝世于1650年2月11日,差一个月零三周没活到54岁。
笛卡儿虽然从小就喜欢数学,但他真正自信自己有数学才能并开始认真用心研究数学却是因为一次偶然的机缘。
那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。
笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:
有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。
在法国生活了若干年之后,他为了把自己对事物的见解用书面形式陈述出来,他又离开了带有宗教偏见和世俗的专制政体的法国,回到了可爱而好客的荷兰,甚至于和海盗的冲突也抹然不了他对荷兰的美好回忆。正是在荷兰,笛卡儿完成了他的《几何》。此著作不长,但堪称几何著作中的珍宝。
笛卡儿在斯德哥尔摩逝世十六年后,他的骨灰被转送回巴黎。开始时安放在巴维尔教堂,1667年被移放到法国伟人们的墓地--神圣的巴黎的保卫者们和名人的公墓。法国许多杰出的学者都在那里找到了自己最后的归宿。
数学之父—泰勒斯(Thales)
泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
在泰勒斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而泰勒斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,主要是一些由经验中总结出来的计算公式。泰勒斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,泰勒斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以泰勒斯素有数学之父的尊称,原因就在这里。
泰勒斯最先证明了如下的定理:
1.圆被任一直径二等分。
2.等腰三角形的两底角相等。
3.两条直线相交,对顶角相等。
4.半圆的内接三角形,一定是直角三角形。
5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。
这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。
泰勒斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,泰勒斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,泰勒斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前泰勒斯曾对Delians预言此事。 泰勒斯的墓碑上列有这样一段题辞:「这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。」
关于“段学复的主要论著”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是珠升号的签约作者“晓桐少女”
本文概览:网上有关“段学复的主要论著”话题很是火热,小编也是针对段学复的主要论著寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。1 段学复,华罗庚...
文章不错《段学复的主要论著》内容很有帮助